References in zbMATH (referenced in 54 articles )

Showing results 1 to 20 of 54.
Sorted by year (citations)

1 2 3 next

  1. Wang, Jie; Magron, Victor: Exploiting sparsity in complex polynomial optimization (2022)
  2. Dallard, Clément; Milanič, Martin; Štorgel, Kenny: Treewidth versus clique number. I: Graph classes with a forbidden structure (2021)
  3. Milanič, Martin; Pivač, Nevena: Polynomially bounding the number of minimal separators in graphs: reductions, sufficient conditions, and a dichotomy theorem (2021)
  4. Wang, Jie; Magron, Victor: Exploiting term sparsity in noncommutative polynomial optimization (2021)
  5. Ait-Ferhat, Dehia; Juliard, Vincent; Stauffer, Gautier; Torres, Juan Andres: The (k)-path coloring problem in graphs of bounded treewidth: an application in integrated circuit manufacturing (2020)
  6. Bodewes, Jelco M.; Bodlaender, Hans L.; Cornelissen, Gunther; van der Wegen, Marieke: Recognizing hyperelliptic graphs in polynomial time (2020)
  7. Courcelle, Bruno: On quasi-planar graphs: clique-width and logical description (2020)
  8. Krause, Philipp Klaus; Larisch, Lukas; Salfelder, Felix: The tree-width of C (2020)
  9. Ouali, Abdelkader; Allouche, David; de Givry, Simon; Loudni, Samir; Lebbah, Yahia; Loukil, Lakhdar; Boizumault, Patrice: Variable neighborhood search for graphical model energy minimization (2020)
  10. Wang, Guanglei; Hijazi, Hassan: Exploiting sparsity for the min (k)-partition problem (2020)
  11. Aidun, Ivan; Dean, Frances; Morrison, Ralph; Yu, Teresa; Yuan, Julie: Graphs of gonality three (2019)
  12. Amarilli, Antoine; Bourhis, Pierre; Monet, Mikaël; Senellart, Pierre: Evaluating Datalog via tree automata and cycluits (2019)
  13. Benjumeda, Marco; Bielza, Concha; Larrañaga, Pedro: Learning tractable Bayesian networks in the space of elimination orders (2019)
  14. Gaspers, Serge; Gudmundsson, Joachim; Jones, Mitchell; Mestre, Julián; Rümmele, Stefan: Turbocharging treewidth heuristics (2019)
  15. Janssen, Remie; Jones, Mark; Kelk, Steven; Stamoulis, Georgios; Wu, Taoyang: Treewidth of display graphs: bounds, brambles and applications (2019)
  16. Wan, Peng-Fei; Chen, Xin-Zhuang: Computing the number of (k)-component spanning forests of a graph with bounded treewidth (2019)
  17. Bliem, Bernhard; Woltran, Stefan: Complexity of secure sets (2018)
  18. Burton, Benjamin A.; Maria, Clément; Spreer, Jonathan: Algorithms and complexity for Turaev-Viro invariants (2018)
  19. Courcelle, Bruno: From tree-decompositions to clique-width terms (2018)
  20. Kelk, Steven; Stamoulis, Georgios; Wu, Taoyang: Treewidth distance on phylogenetic trees (2018)

1 2 3 next