aplore3
aplore3: Datasets from Hosmer, Lemeshow and Sturdivant, ”Applied Logistic Regression” (3rd ed.) This package is a unofficial companion to the textbook ”Applied Logistic Regression” by D.W. Hosmer, S. Lemeshow and R.X. Sturdivant (3rd ed.).
Keywords for this software
References in zbMATH (referenced in 64 articles )
Showing results 1 to 20 of 64.
Sorted by year (- Höppner, Sebastiaan; Baesens, Bart; Verbeke, Wouter; Verdonck, Tim: Instance-dependent cost-sensitive learning for detecting transfer fraud (2022)
- Kim, Min-Ho; Lee, Jea-Young: How to construct a nomogram for hypertension using complex sampling data from Korean adults (2022)
- Silva, Diego M. B.; Pereira, Gustavo H. A.; Magalhães, Tiago M.: A class of categorization methods for credit scoring models (2022)
- Başoğlu Kabran, Fatma; Ünlü, Kamil Demirberk: A two-step machine learning approach to predict S&P 500 bubbles (2021)
- Civitelli, Enrico; Lapucci, Matteo; Schoen, Fabio; Sortino, Alessio: An effective procedure for feature subset selection in logistic regression based on information criteria (2021)
- Gunnarsson, Björn Rafn; vanden Broucke, Seppe; Baesens, Bart; Óskarsdóttir, María; Lemahieu, Wilfried: Deep learning for credit scoring: do or don’t? (2021)
- Krasanakis, Emmanouil; Symeonidis, Andreas: Defining behaviorizeable relations to enable inference in semi-automatic program synthesis (2021)
- Pinto, Vimukthini; Sooriyarachchi, Roshini: Comparison of methods of estimation for a goodness of fit test -- an analytical and simulation study (2021)
- Whitaker, T.; Beranger, B.; Sisson, S. A.: Logistic regression models for aggregated data (2021)
- Yu, Peiran; Pong, Ting Kei; Lu, Zhaosong: Convergence rate analysis of a sequential convex programming method with line search for a class of constrained difference-of-convex optimization problems (2021)
- Yu, Tengchao; Wang, Hongqiao; Li, Jinglai: Maximum conditional entropy Hamiltonian Monte Carlo sampler (2021)
- Zhang, Xu; Tian, Yahui; Guan, Guoyu; Gel, Yulia R.: Depth-based classification for relational data with multiple attributes (2021)
- Zhu, Xuening; Li, Feng; Wang, Hansheng: Least-square approximation for a distributed system (2021)
- Brentnall, Adam R.; Cuzick, Jack: Risk models for breast cancer and their validation (2020)
- Cui, Chunfeng; Zhang, Kaiqi; Daulbaev, Talgat; Gusak, Julia; Oseledets, Ivan; Zhang, Zheng: Active subspace of neural networks: structural analysis and universal attacks (2020)
- Li, Yong; Asar, Yasin; Wu, Jibo: On the stochastic restricted Liu estimator in logistic regression model (2020)
- McManus, Scott; Rahman, Azizur; Horta, Ana; Coombes, Jacqueline: Applied Bayesian modeling for assessment of interpretation uncertainty in spatial domains (2020)
- Metulini, Rodolfo; Le Carre, Mael: Measuring sport performances under pressure by classification trees with application to basketball shooting (2020)
- Naka, Poontavika; Boado-Penas, María del Carmen; Lanot, Gauthier: A multiple state model for the working-age disabled population using cross-sectional data (2020)
- Orozco-Acosta, Erick; Llinás-Solano, Humberto; Fonseca-Rodríguez, Javier: Convergence theorems in multinomial saturated and logistic models (2020)