AceGen

AceGen: Multi-language, Multi-environment Numerical Code Generation. The Mathematica package AceGen is used for the automatic derivation of formulae needed in numerical procedures. An approach, implemented in AceGen, avoids the problem of expression swell by combining: symbolic and algebraic capabilities of Mathematica, automatic differentiation technique, automatic code generation and simultaneous optimization of expressions. The multi-language capabilities of AceGen (C, FORTRAN, Mathematica©, Matlab©,..) enable generation of numerical codes for various numerical environments (AceFEM, Matlab©, FEAP©, ABAQUS©, ... ) from the same symbolic description. AceGen alone does NOT include examples and libraries needed for the automation of the Finite Element Method!


References in zbMATH (referenced in 36 articles )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. Fuhg, Jan Niklas; Böhm, Christoph; Bouklas, Nikolaos; Fau, Amelie; Wriggers, Peter; Marino, Michele: Model-data-driven constitutive responses: application to a multiscale computational framework (2021)
  2. Wriggers, Peter; Hudobivnik, Blaž; Aldakheel, Fadi: NURBS-based geometries: a mapping approach for virtual serendipity elements (2021)
  3. Huang, Dengpeng; Fuhg, Jan Niklas; Weißenfels, Christian; Wriggers, Peter: A machine learning based plasticity model using proper orthogonal decomposition (2020)
  4. Plagge, Jan; Ricker, A.; Kröger, N. H.; Wriggers, P.; Klüppel, M.: Efficient modeling of filled rubber assuming stress-induced microscopic restructurization (2020)
  5. van Huyssteen, Daniel; Reddy, B. D.: A virtual element method for isotropic hyperelasticity (2020)
  6. Wriggers, P.; Hudobivnik, B.; Aldakheel, F.: A virtual element formulation for general element shapes (2020)
  7. Nisters, Carina; Schwarz, Alexander: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations (2018)
  8. Areias, P.; Rabczuk, Timon; Reinoso, J.; César de Sá, J.: Finite-strain low order shell using least-squares strains and two-parameter thickness extensibility (2017)
  9. Korelc, Jože; Wriggers, Peter: Automation of finite element methods (2016)
  10. Stanić, Andjelka; Brank, Boštjan; Korelc, Jože: On path-following methods for structural failure problems (2016)
  11. Brank, Boštjan; Ibrahimbegović, Adnan; Bohinc, Uroš: On discrete-Kirchhoff plate finite elements: implementation and discretization error (2015)
  12. Šolinc, Urša; Korelc, Jože: A simple way to improved formulation of (\textFE^2) analysis (2015)
  13. Korelc, Jože; Stupkiewicz, Stanisław: Closed-form matrix exponential and its application in finite-strain plasticity (2014)
  14. Auricchio, Ferdinando; Beirão da Veiga, Lourenço; Lovadina, Carlo; Reali, Alessandro; Taylor, Robert L.; Wriggers, Peter: Approximation of incompressible large deformation elastic problems: some unresolved issues (2013)
  15. Dujc, Jaka; Brank, Boštjan; Ibrahimbegovic, Adnan: Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids (2013)
  16. Seabra, Mariana R. R.; Šuštarič, Primož; Cesar de Sa, Jose M. A.; Rodič, Tomaž: Damage driven crack initiation and propagation in ductile metals using XFEM (2013)
  17. Wcisło, B.; Pamin, J.; Kowalczyk-Gajewska, K.: Gradient-enhanced damage model for large deformations of elastic-plastic materials (2013)
  18. Dujc, Jaka; Brank, Boštjan: Stress resultant plasticity for shells revisited (2012)
  19. Lengiewicz, Jakub; Stupkiewicz, Stanisław: Continuum framework for finite element modelling of finite wear (2012)
  20. Seabra, Mariana R. R.; Cesar de Sa, Jose M. A.; Šuštarič, Primož; Rodič, Tomaž: Some numerical issues on the use of XFEM for ductile fracture (2012)

1 2 next