AceFEM The Mathematica Finite Element Environment. The AceFEM package is a general finite element environment designed to solve multi-physics and multi-field problems. The package explores advantages of symbolic capabilities of Mathematica while maintaining numerical efficiency of commercial finite element environments. The element oriented approach enables easy creation of customized finite element based applications in Mathematica. It also includes examples and libraries needed for the automation of the Finite Element Method.

References in zbMATH (referenced in 69 articles )

Showing results 1 to 20 of 69.
Sorted by year (citations)

1 2 3 4 next

  1. Bode, T.; Weißenfels, C.; Wriggers, P.: A consistent peridynamic formulation for arbitrary particle distributions (2021)
  2. Böhm, Christoph; Hudobivnik, Blaž; Marino, Michele; Wriggers, Peter: Electro-magneto-mechanically response of polycrystalline materials: computational homogenization via the virtual element method (2021)
  3. Cihan, Mertcan; Hudobivnik, Blaž; Aldakheel, Fadi; Wriggers, Peter: 3D mixed virtual element formulation for dynamic elasto-plastic analysis (2021)
  4. Costa e Silva, Cátia; Maassen, Sascha Florian; Pimenta, Paulo M.; Schröder, Jörg: On the simultaneous use of simple geometrically exact shear-rigid rod and shell finite elements (2021)
  5. Fuhg, Jan Niklas; Böhm, Christoph; Bouklas, Nikolaos; Fau, Amelie; Wriggers, Peter; Marino, Michele: Model-data-driven constitutive responses: application to a multiscale computational framework (2021)
  6. Gay Neto, Alfredo; Hudobivnik, Blaž; Moherdaui, Tiago Fernandes; Wriggers, Peter: Flexible polyhedra modeled by the virtual element method in a discrete element context (2021)
  7. Lavrenčič, Marko; Brank, Boštjan: Energy-decaying and momentum-conserving schemes for transient simulations with mixed finite elements (2021)
  8. López, Jorge; Anitescu, Cosmin; Rabczuk, Timon: Isogeometric structural shape optimization using automatic sensitivity analysis (2021)
  9. Mucha, M.; Wcisło, B.; Pamin, J.: Simulation of Lueders bands using regularized large strain elasto-plasticity (2021)
  10. Porenta, Luka; Lavrenčič, Marko; Dujc, Jaka; Brojan, Miha; Tušek, Jaka; Brank, Boštjan: Modeling large deformations of thin-walled SMA structures by shell finite elements (2021)
  11. Ren, Huilong; Zhuang, Xiaoying; Trung, Nguyen-Thoi; Rabczuk, Timon: A nonlocal operator method for finite deformation higher-order gradient elasticity (2021)
  12. Rezaee-Hajidehi, M.; Tůma, K.; Stupkiewicz, S.: A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity (2021)
  13. Sadowski, Przemysław; Kowalczyk-Gajewska, Katarzyna; Stupkiewicz, Stanisław: Spurious softening in the macroscopic response predicted by the additive tangent Mori-Tanaka scheme for elastic-viscoplastic composites (2021)
  14. Stanić, A.; Brank, B.; Ibrahimbegovic, A.; Matthies, H. G.: Crack propagation simulation without crack tracking algorithm: embedded discontinuity formulation with incompatible modes (2021)
  15. Tůma, K.; Rezaee-Hajidehi, M.; Hron, J.; Farrell, P. E.; Stupkiewicz, S.: Phase-field modeling of multivariant martensitic transformation at finite-strain: computational aspects and large-scale finite-element simulations (2021)
  16. van Huyssteen, Daniel; Reddy, B. D.: A virtual element method for transversely isotropic hyperelasticity (2021)
  17. Wriggers, P.; De Bellis, M. L.; Hudobivnik, B.: A Taylor-Hood type virtual element formulations for large incompressible strains (2021)
  18. Wriggers, Peter; Hudobivnik, Blaž; Aldakheel, Fadi: NURBS-based geometries: a mapping approach for virtual serendipity elements (2021)
  19. Bode, T.; Weißenfels, C.; Wriggers, P.: Mixed peridynamic formulations for compressible and incompressible finite deformations (2020)
  20. Bode, T.; Weißenfels, C.; Wriggers, P.: Peridynamic Petrov-Galerkin method: a generalization of the peridynamic theory of correspondence materials (2020)

1 2 3 4 next