ALBERTA is an Adaptive multiLevel finite element toolbox using Bisectioning refinement and Error control by Residual Techniques for scientific Applications. ALBERTA, a sequential adaptive finite-element toolbox, is being used widely in the fields of scientific and engineering computation, especially in the numerical simulation of electromagnetics. But the nature of sequentiality has become the bottle-neck while solving large scale problems. So we develop a parallel adaptive finite-element package based on ALBERTA, using ParMETIS and PETSc. The package is able to deal with any problem that ALBERT solved. Furthermore, it is suitable for distributed memory parallel computers including PC clusters

References in zbMATH (referenced in 179 articles , 1 standard article )

Showing results 81 to 100 of 179.
Sorted by year (citations)
  1. Abdulle, A.; Nonnenmacher, A.: Adaptive finite element heterogeneous multiscale method for homogenization problems (2011)
  2. Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo H.: Preconditioning a class of fourth order problems by operator splitting (2011)
  3. Barreira, R.; Elliott, C. M.; Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces (2011)
  4. Berrone, S.; Garbero, V.; Marro, M.: Numerical simulation of low-Reynolds number flows past rectangular cylinders based on adaptive finite element and finite volume methods (2011)
  5. Berrone, S.; Verani, M.: A new marking strategy for the adaptive finite element approximation of optimal control constrained problems (2011)
  6. Blank, Luise; Butz, Martin; Garcke, Harald: Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method (2011)
  7. Bonito, A.; Nochetto, R. H.; Pauletti, M. S.: Dynamics of biomembranes: effect of the bulk fluid (2011)
  8. Brix, Kolja; Massjung, Ralf; Voss, Alexander: Refinement and connectivity algorithms for adaptive discontinuous Galerkin methods (2011)
  9. Demlow, Alan; Stevenson, Rob: Convergence and quasi-optimality of an adaptive finite element method for controlling (L_2) errors (2011)
  10. Elliott, Charles M.; Stinner, Björn; Styles, Vanessa; Welford, Richard: Numerical computation of advection and diffusion on evolving diffuse interfaces (2011)
  11. Garau, Eduardo M.; Morin, Pedro: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems (2011)
  12. Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos: Convergence of an adaptive Kačanov FEM for quasi-linear problems (2011)
  13. Janssen, Bärbel; Kanschat, Guido: Adaptive multilevel methods with local smoothing for (H^1)- and (H^\textcurl)-conforming high order finite element methods (2011)
  14. Kreuzer, Christian; Siebert, Kunibert G.: Decay rates of adaptive finite elements with Dörfler marking (2011)
  15. Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo H.: AFEM for the Laplace-Beltrami operator on graphs: Design and conditional contraction property (2011)
  16. Shaw, Simon: Finite element approximation of a non-local problem in non-Fickian polymer diffusion (2011)
  17. Siebert, Kunibert G.: A convergence proof for adaptive finite elements without lower bound (2011)
  18. Tian, Li; Chen, Falai; Du, Qiang: Adaptive finite element methods for elliptic equations over hierarchical T-meshes (2011)
  19. Alauzet, Frederic; Hassan, Wissam; Picasso, Marco: Goal oriented, anisotropic, a posteriori error estimates for the Laplace equation (2010)
  20. Barrett, John W.; Garcke, Harald; Nürnberg, Robert: On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth (2010)