S@M

S@M, a Mathematica implementation of the spinor-helicity formalism. We present the package S@M (Spinors@ Mathematica) which implements the spinor-helicity formalism in Mathematica. The package allows the use of complex-spinor algebra along with the multi-purpose features of Mathematica. The package defines the spinor objects with their basic properties along with functions to manipulate them. It also offers the possibility of evaluating the spinorial objects numerically at every computational step. The package is therefore well suited to be used in the context of on-shell technology, in particular for the evaluation of scattering amplitudes at tree- and loop-level.


References in zbMATH (referenced in 17 articles )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. De Laurentis, Giuseppe; Maître, Daniel: Extracting analytical one-loop amplitudes from numerical evaluations (2019)
  2. Bai, Dong; Xing, Yu-Hang: Higher derivative theories for interacting massless gravitons in Minkowski spacetime (2018)
  3. Loebbert, Florian; Mojaza, Matin; Plefka, Jan: Hidden conformal symmetry in tree-level graviton scattering (2018)
  4. Bork, L. V.; Onishchenko, A. I.: Grassmannians and form factors with (q^2 = 0) in ( \mathcalN=4) SYM theory (2016)
  5. Mastrolia, Pierpaolo; Peraro, Tiziano; Primo, Amedeo: Adaptive integrand decomposition in parallel and orthogonal space (2016)
  6. Mastrolia, Pierpaolo; Primo, Amedeo; Schubert, Ulrich; Torres Bobadilla, William J.: Off-shell currents and color-kinematics duality (2016)
  7. Klose, Thomas; McLoughlin, Tristan; Nandan, Dhritiman; Plefka, Jan; Travaglini, Gabriele: Double-soft limits of gluons and gravitons (2015)
  8. Boels, Rutger H.; Isermann, Reinke Sven: Yang-Mills amplitude relations at loop level from non-adjacent BCFW shifts (2012)
  9. Britto, Ruth; Mirabella, Edoardo: External leg corrections in the unitarity method (2012)
  10. Gómez-Lobo, Alfonso García-Parrado; Martín-García, José M.: \textitSpinors: a Mathematica package for doing spinor calculus in general relativity (2012)
  11. Mastrolia, Pierpaolo; Mirabella, Edoardo; Peraro, Tiziano: Integrand reduction of one-loop scattering amplitudes through Laurent series expansion (2012)
  12. Cullen, G.; Koch-Janusz, M.; Reiter, T.: \textttspinney: a \textttFormlibrary for helicity spinors (2011)
  13. Dixon, Lance J.; Henn, Johannes M.; Plefka, Jan; Schuster, Theodor: All tree-level amplitudes in massless QCD (2011)
  14. Feng, Bo; Zhang, Zhibai: Boundary contributions using fermion pair deformation (2011)
  15. Mastrolia, Pierpaolo; Ossola, Giovanni: On the integrand-reduction method for two-loop scattering amplitudes (2011)
  16. Badger, Simon; Nigel Glover, E. W.; Mastrolia, Pierpaolo; Williams, Ciaran: One-loop Higgs plus four gluon amplitudes: Full analytic results (2010)
  17. Maître, D.; Mastrolia, P.: S@M, a Mathematica implementation of the spinor-helicity formalism (2008)