Reduze

Reduze – Feynman integral reduction in C++. Reduze is a computer program for reducing Feynman integrals to master integrals employing a variant of Laporta’s reduction algorithm. This web page presents version 2 of the program. New features include the distributed reduction of single topologies on multiple processor cores. The parallel reduction of different topologies is supported via a modular, load balancing job system. Fast graph and matroid based algorithms allow for the identification of equivalent topologies and integrals. Reduze uses GiNaC or, optionally, Fermat to perform manipulations of algebraic expressions.


References in zbMATH (referenced in 82 articles , 1 standard article )

Showing results 1 to 20 of 82.
Sorted by year (citations)

1 2 3 4 5 next

  1. Xiao Liu, Yan-Qing Ma: AMFlow: a Mathematica Package for Feynman integrals computation via Auxiliary Mass Flow (2022) arXiv
  2. Frellesvig, Hjalte; Gasparotto, Federico; Laporta, Stefano; Mandal, Manoj K.; Mastrolia, Pierpaolo; Mattiazzi, Luca; Mizera, Sebastian: Decomposition of Feynman integrals by multivariate intersection numbers (2021)
  3. Heinrich, Gudrun: Collider physics at the precision frontier (2021)
  4. Pikelner, Andrey: Three-loop vertex integrals at symmetric point (2021)
  5. Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.; Schönwald, K.: The three-loop single mass polarized pure singlet operator matrix element (2020)
  6. Bendle, Dominik; Böhm, Janko; Decker, Wolfram; Georgoudis, Alessandro; Pfreundt, Franz-Josef; Rahn, Mirko; Wasser, Pascal; Zhang, Yang: Integration-by-parts reductions of Feynman integrals using singular and GPI-space (2020)
  7. Blümlein, Johannes: Large scale analytic calculations in quantum field theories (2020)
  8. Capatti, Zeno; Hirschi, Valentin; Kermanschah, Dario; Pelloni, Andrea; Ruijl, Ben: Numerical loop-tree duality: contour deformation and subtraction (2020)
  9. Caron-Huot, Simon; Chicherin, Dmitry; Henn, Johannes; Zhang, Yang; Zoia, Simone: Multi-Regge limit of the two-loop five-point amplitudes in (\mathcalN= 4) super Yang-Mills and (\mathcalN= 8) supergravity (2020)
  10. Smirnov, A. V.; Smirnov, V. A.: How to choose master integrals (2020)
  11. Ablinger, J.; Blümlein, J.; Marquard, P.; Rana, N.; Schneider, C.: Automated solution of first order factorizable systems of differential equations in one variable (2019)
  12. Abreu, Samuel; Page, Ben; Zeng, Mao: Differential equations from unitarity cuts: nonplanar hexa-box integrals (2019)
  13. Ahmed, Taushif; Dhani, Prasanna K.: Two-loop doubly massive four-point amplitude involving a half-BPS and Konishi operator (2019)
  14. Badger, Simon; Brønnum-Hansen, Christian; Hartanto, Heribertus Bayu; Peraro, Tiziano: Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case (2019)
  15. Behring, A.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Klein, S.; von Manteuffel, A.; Schneider, C.; Schönwald, K.: The polarized three-loop anomalous dimensions from on-shell massive operator matrix elements (2019)
  16. Binucci, Carla; Brandes, Ulrik; Dwyer, Tim; Gronemann, Martin; von Hanxleden, Reinhard; van Kreveld, Marc; Mutzel, Petra; Schaefer, Marcus; Schreiber, Falk; Speckmann, Bettina: 10 reasons to get interested in graph drawing (2019)
  17. Bitoun, Thomas; Bogner, Christian; Klausen, René Pascal; Panzer, Erik: Feynman integral relations from parametric annihilators (2019)
  18. Chicherin, D.; Gehrmann, T.; Henn, J. M.; Lo Presti, N. A.; Mitev, V.; Wasser, P.: Analytic result for the nonplanar hexa-box integrals (2019)
  19. Chicherin, Dmitry; Gehrmann, Thomas; Henn, Johannes M.; Wasser, Pascal; Zhang, Yang; Zoia, Simone: The two-loop five-particle amplitude in $ \mathcalN=8$ supergravity (2019)
  20. Frellesvig, Hjalte; Gasparotto, Federico; Laporta, Stefano; Mandal, Manoj K.; Mastrolia, Pierpaolo; Mattiazzi, Luca; Mizera, Sebastian: Decomposition of Feynman integrals on the maximal cut by intersection numbers (2019)

1 2 3 4 5 next