NAG4M2

NumericalAlgebraicGeometry -- Numerical Algebraic Geometry. The package NumericalAlgebraicGeometry, also known as NAG4M2 (Numerical Algebraic Geometry for Macaulay2), implements methods of polynomial homotopy continuation to solve systems of polynomial equations and describe positive-dimensional complex algebraic varieties. A version of the package is distributed with the latest version of Macaulay2.


References in zbMATH (referenced in 13 articles )

Showing results 1 to 13 of 13.
Sorted by year (citations)

  1. Kosta, Dimitra; Kubjas, Kaie: Maximum likelihood estimation of symmetric group-based models via numerical algebraic geometry (2019)
  2. Chen, Tianran; Lee, Tsung-Lin; Li, Tien-Yien: Mixed cell computation in HOM4ps (2017)
  3. Hauenstein, Jonathan D. (ed.); Sommese, Andrew J. (ed.): Foreword. What is numerical algebraic geometry? (2017)
  4. Leykin, Anton; Plaumann, Daniel: Determinantal representations of hyperbolic curves via polynomial homotopy continuation (2017)
  5. Hauenstein, Jonathan D.; Liddell, Alan C.: Certified predictor-corrector tracking for Newton homotopies (2016)
  6. Jensen, Anders; Leykin, Anton; Yu, Josephine: Computing tropical curves via homotopy continuation (2016)
  7. Martín del Campo, Abraham; Sottile, Frank: Experimentation in the Schubert calculus (2016)
  8. Bates, Daniel J.; Niemerg, Matthew: Using monodromy to avoid high precision in homotopy continuation (2014)
  9. Chen, Tianran; Lee, Tsung-Lin; Li, Tien-Yien: Hom4ps-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods (2014)
  10. Beltrán, Carlos; Leykin, Anton: Robust certified numerical homotopy tracking (2013)
  11. Beltrán, Carlos; Pardo, Luis Miguel: Fast linear homotopy to find approximate zeros of polynomial systems (2011)
  12. Anton Leykin: Numerical Algebraic Geometry for Macaulay2 (2009) arXiv
  13. Leykin, Anton: Numerical algebraic geometry for macaulay2 (2009) ioport