References in zbMATH (referenced in 51 articles , 1 standard article )

Showing results 1 to 20 of 51.
Sorted by year (citations)

1 2 3 next

  1. Bachoc, François; Bevilacqua, Moreno; Velandia, Daira: Composite likelihood estimation for a Gaussian process under fixed domain asymptotics (2019)
  2. Bachoc, François; Lagnoux, Agnès; López-Lopera, Andrés F.: Maximum likelihood estimation for Gaussian processes under inequality constraints (2019)
  3. Gu, Mengyang: Jointly robust prior for Gaussian stochastic process in emulation, calibration and variable selection (2019)
  4. Mickaël Binois and Victor Picheny: GPareto: An R Package for Gaussian-Process-Based Multi-Objective Optimization and Analysis (2019) not zbMATH
  5. Mohammadi, Hossein; Challenor, Peter; Goodfellow, Marc: Emulating dynamic non-linear simulators using Gaussian processes (2019)
  6. Picheny, Victor; Binois, Mickael; Habbal, Abderrahmane: A Bayesian optimization approach to find Nash equilibria (2019)
  7. Sambakhé, Diariétou; Rouan, Lauriane; Bacro, Jean-Noël; Gozé, Eric: Conditional optimization of a noisy function using a kriging metamodel (2019)
  8. Sun, Furong; Gramacy, Robert B.; Haaland, Benjamin; Lawrence, Earl; Walker, Andrew: Emulating satellite drag from large simulation experiments (2019)
  9. Welchowski, Thomas; Schmid, Matthias: Sparse kernel deep stacking networks (2019)
  10. Erickson, Collin B.; Ankenman, Bruce E.; Sanchez, Susan M.: Comparison of Gaussian process modeling software (2018)
  11. Gu, Mengyang; Wang, Long: Scaled Gaussian stochastic process for computer model calibration and prediction (2018)
  12. Gu, Mengyang; Wang, Xiaojing; Berger, James O.: Robust Gaussian stochastic process emulation (2018)
  13. Ludkovski, Mike; Risk, Jimmy; Zail, Howard: Gaussian process models for mortality rates and improvement factors (2018)
  14. Marmin, Sébastien; Ginsbourger, David; Baccou, Jean; Liandrat, Jacques: Warped Gaussian processes and derivative-based sequential designs for functions with heterogeneous variations (2018)
  15. Mathieu Carmassi; Pierre Barbillon; Matthieu Chiodetti; Merlin Keller; Eric Parent: CaliCo: a R package for Bayesian calibration (2018) arXiv
  16. Risk, Jimmy; Ludkovski, Michael: Sequential design and spatial modeling for portfolio tail risk measurement (2018)
  17. Rullière, Didier; Durrande, Nicolas; Bachoc, François; Chevalier, Clément: Nested kriging predictions for datasets with a large number of observations (2018)
  18. Ben Salem, Malek; Roustant, Olivier; Gamboa, Fabrice; Tomaso, Lionel: Universal prediction distribution for surrogate models (2017)
  19. Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, Michel Lang: mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions (2017) arXiv
  20. Hu, Ruimeng; Ludkovsk, Mike: Sequential design for ranking response surfaces (2017)

1 2 3 next