GAP-Manual: 5.2 Constructing the set of all numerical semigroups containing a given numerical semigroup In order to construct the set of numerical semigroups containing a fixed numerical semigroup S, one first constructs its unitary extensions, that is to say, the sets S∪{g} that are numerical semigroups with g a positive integer. This is achieved by constructing the special gaps of the semigroup, and then adding each of them to the numerical semigroup. Then we repeat the process for each of this new numerical semigroups until we reach N.

References in zbMATH (referenced in 38 articles )

Showing results 1 to 20 of 38.
Sorted by year (citations)

1 2 next

  1. Eliahou, Shalom; Fromentin, Jean: Near-misses in Wilf’s conjecture (2019)
  2. Bras-Amorós, Maria; Fernández-González, Julio: Computation of numerical semigroups by means of seeds (2018)
  3. Castellanos, A. S.; Tizziotti, G.: On Weierstrass semigroup at (m) points on curves of the form (f(y)=g(x)) (2018)
  4. De Loera, Jesus; O’Neill, Christopher; Wilburne, Dane: Random numerical semigroups and a simplicial complex of irreducible semigroups (2018)
  5. Bernardini, Matheus; Torres, Fernando: Counting numerical semigroups by genus and even gaps (2017)
  6. Delgado, M.; García-Sánchez, P. A.: numericalsgps, a GAP package for numerical semigroups (2016)
  7. Failla, Gioia; Peterson, Chris; Utano, Rosanna: Algorithms and basic asymptotics for generalized numerical semigroups in (\mathbbN^d) (2016)
  8. Fromentin, Jean; Hivert, Florent: Exploring the tree of numerical semigroups. (2016)
  9. Gu, Ze; Tang, Xilin: The doubles of one half of a numerical semigroup. (2016)
  10. Ilhan, Sedat; Süer, Meral: On the saturated numerical semigroups (2016)
  11. Moyano-Fernández, Julio José; Uliczka, Jan: Duality and syzygies for semimodules over numerical semigroups (2016)
  12. Moyano-Fernández, Julio José; Uliczka, Jan: Lattice paths with given number of turns and semimodules over numerical semigroups (2014)
  13. Assi, A.; García-Sánchez, P. A.: Constructing the set of complete intersection numerical semigroups with a given Frobenius number. (2013)
  14. Nari, Hirokatsu: Symmetries on almost symmetric numerical semigroups. (2013)
  15. Blanco, Víctor; Puerto, Justo: An application of integer programming to the decomposition of numerical semigroups (2012)
  16. Blanco, Víctor; Rosales, José Carlos: On the enumeration of the set of numerical semigroups with fixed Frobenius number. (2012)
  17. Blanco, V.; Rosales, J. C.: The set of numerical semigroups of a given genus. (2012)
  18. Bras-Amorós, Maria: The ordinarization transform of a numerical semigroup and semigroups with a large number of intervals. (2012)
  19. Kaplan, Nathan: Counting numerical semigroups by genus and some cases of a question of Wilf. (2012)
  20. Blanco, Víctor; García-Sánchez, Pedro A.; Puerto, Justo: Counting numerical semigroups with short generating functions. (2011)

1 2 next

Further publications can be found at: