SciPy

SciPy (pronounced ”Sigh Pie”) is open-source software for mathematics, science, and engineering. It is also the name of a very popular conference on scientific programming with Python. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!


References in zbMATH (referenced in 285 articles )

Showing results 1 to 20 of 285.
Sorted by year (citations)

1 2 3 ... 13 14 15 next

  1. Albin, Nathan; Fernando, Nethali; Poggi-Corradini, Pietro: Modulus metrics on networks (2019)
  2. Andreas F. Haselsteiner; Jannik Lehmkuhl; Tobias Pape; Kai-Lukas Windmeier; Klaus-Dieter Thoben: ViroCon: A software to compute multivariate extremes using the environmental contour method (2019) not zbMATH
  3. Andrew Abi-Mansour: PyGran: An object-oriented library for DEM simulation and analysis (2019) not zbMATH
  4. Benjamin Bengfort; Rebecca Bilbro: Yellowbrick: Visualizing the Scikit-Learn Model Selection Process (2019) not zbMATH
  5. Benjamin W. L. Margolis, Kenneth R. Lyons: ndsplines: A Python Library for Tensor-Product B-Splines of Arbitrary Dimension (2019) not zbMATH
  6. Budanur, Nazmi Burak; Fleury, Marc: State space geometry of the chaotic pilot-wave hydrodynamics (2019)
  7. Campillo-Funollet, Eduard; Venkataraman, Chandrasekhar; Madzvamuse, Anotida: Bayesian parameter identification for Turing systems on stationary and evolving domains (2019)
  8. Carrillo, José Antonio; Craig, Katy; Patacchini, Francesco S.: A blob method for diffusion (2019)
  9. Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in python using sfepy (2019)
  10. Clerx, M., Robinson, M., Lambert, B., Lei, C.L., Ghosh, S., Mirams, G.R. and Gavaghan, D.J.: Probabilistic Inference on Noisy Time Series (PINTS) (2019) not zbMATH
  11. Cole, S., Donoghue, T., Gao, R., Voytek, B.: NeuroDSP: A package for neural digital signal processing (2019) not zbMATH
  12. Davide Micieli, Triestino Minniti, Giuseppe Gorini: NeuTomPy toolbox, a Python package for tomographic data processing and reconstruction (2019) not zbMATH
  13. D. Huppenkothen, M. Bachetti, A. L. Stevens, S. Migliari, P. Balm, O. Hammad, U. M. Khan, H. Mishra, H. Rashid, S. Sharma, R. V. Blanco, E. M. Ribeiro: Stingray: A Modern Python Library For Spectral Timing (2019) arXiv
  14. Dudziuk, Grzegorz; Lachowicz, Mirosław; Leszczyński, Henryk; Szymańska, Zuzanna: A simple model of collagen remodeling (2019)
  15. Eric W. Koch, Ryan D. Boyden, Blakesley Burkhart, Adam Ginsburg, Jason L. Loeppky, Stella S.R. Offner: TurbuStat: Turbulence Statistics in Python (2019) arXiv
  16. Georgios Exarchakis, Jörg Bornschein, Abdul-Saboor Sheikh, Zhenwen Dai, Marc Henniges, Jakob Drefs, Jörg Lücke: ProSper - A Python Library for Probabilistic Sparse Coding with Non-Standard Priors and Superpositions (2019) arXiv
  17. Gevorkyan, Migran N.; Korolkova, Anna V.; Kulyabov, Dmitry S.; Lovetskiy, Konstantin P.: Statistically significant comparative performance testing of Julia and Fortran languages in case of Runge-Kutta methods (2019)
  18. Ghosh, Souvik; Loiseau, Jean-Christophe; Breugem, Wim-Paul; Brandt, Luca: Modal and non-modal linear stability of Poiseuille flow through a channel with a porous substrate (2019)
  19. Johansson, Robert: Numerical Python. Scientific computing and data science applications with Numpy, SciPy and Matplotlib (2019)
  20. Jonas Fassbender: libconform v0.1.0: a Python library for conformal prediction (2019) arXiv

1 2 3 ... 13 14 15 next