R package mclust: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation , Normal Mixture Modeling fitted via EM algorithm for Model-Based Clustering, Classification, and Density Estimation, including Bayesian regularization.

References in zbMATH (referenced in 221 articles , 2 standard articles )

Showing results 1 to 20 of 221.
Sorted by year (citations)

1 2 3 ... 10 11 12 next

  1. Boehmke, Brad; Greenwell, Brandon M.: Hands-on machine learning with R (2020)
  2. Chacón, José E.: Mixture model modal clustering (2019)
  3. Dena J. Clink, Holger Klinck: GIBBONR: An R package for the detection and classification of acoustic signals using machine learning (2019) arXiv
  4. Flynt, Abby; Dean, Nema: Growth mixture modeling with measurement selection (2019)
  5. Flynt, Abby; Dean, Nema; Nugent, Rebecca: sARI: a \textitsoftagreement measure for class partitions incorporating assignment probabilities (2019)
  6. Loperfido, Nicola: Finite mixtures, projection pursuit and tensor rank: a triangulation (2019)
  7. Lu, Zhao-Hua; Chow, Sy-Miin; Ram, Nilam; Cole, Pamela M.: Zero-inflated regime-switching stochastic differential equation models for highly unbalanced multivariate, multi-subject time-series data (2019)
  8. Michael Hahsler; Matthew Piekenbrock; Derek Doran: dbscan: Fast Density-Based Clustering with R (2019) not zbMATH
  9. O’Hagan, Adrian; Murphy, Thomas Brendan; Scrucca, Luca; Gormley, Isobel Claire: Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap (2019)
  10. O’Hagan, Adrian; White, Arthur: Improved model-based clustering performance using Bayesian initialization averaging (2019)
  11. Park, Ju-Hyun; Kyung, Minjung: Bayesian curve fitting and clustering with Dirichlet process mixture models for microarray data (2019)
  12. Rathke, Fabian; Schnörr, Christoph: Fast multivariate log-concave density estimation (2019)
  13. Shi, Xianfeng; Liu, Xuejun; Zhang, Li: PUseqClust: a clustering analysis method for RNA-seq data (2019)
  14. Alexander Foss; Marianthi Markatou: kamila: Clustering Mixed-Type Data in R and Hadoop (2018) not zbMATH
  15. Angelo Mazza; Antonio Punzo; Salvatore Ingrassia: flexCWM: A Flexible Framework for Cluster-Weighted Models (2018) not zbMATH
  16. Athreya, Avanti; Fishkind, Donniell E.; Tang, Minh; Priebe, Carey E.; Park, Youngser; Vogelstein, Joshua T.; Levin, Keith; Lyzinski, Vince; Qin, Yichen; Sussman, Daniel L.: Statistical inference on random dot product graphs: a survey (2018)
  17. Brocas, Isabelle; Carrillo, Juan D.; Sachdeva, Ashish: The path to equilibrium in sequential and simultaneous games: a mousetracking study (2018)
  18. Brodinová, Šárka; Zaharieva, Maia; Filzmoser, Peter; Ortner, Thomas; Breiteneder, Christian: Clustering of imbalanced high-dimensional media data (2018)
  19. Fop, Michael; Murphy, Thomas Brendan: Variable selection methods for model-based clustering (2018)
  20. Galimberti, Giuliano; Manisi, Annamaria; Soffritti, Gabriele: Modelling the role of variables in model-based cluster analysis (2018)

1 2 3 ... 10 11 12 next