LattE (Lattice point Enumeration) is a computer software dedicated to the problems of counting lattice points and integration inside convex polytopes. LattE contains the first ever implementation of Barvinok’s algorithm. The LattE macchiato version (by M. Köppe) incorporated fundamental improvements and speed ups. Now the latest version, LattE integrale, has the ability to directly compute integrals of polynomial functions over polytopes and in particular to do volume computations.

This software is also referenced in ORMS.

References in zbMATH (referenced in 102 articles , 2 standard articles )

Showing results 1 to 20 of 102.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Baldoni, V.; Vergne, M.; Walter, M.: Computation of dilated Kronecker coefficients (2018)
  2. Berg, Sören; Jochemko, Katharina; Silverstein, Laura: Ehrhart tensor polynomials (2018)
  3. Davis, Robert; Sagan, Bruce: Pattern-avoiding polytopes (2018)
  4. García-García, J. I.; Marín-Aragón, D.; Vigneron-Tenorio, A.: An extension of Wilf’s conjecture to affine semigroups (2018)
  5. Ge, Cunjing; Ma, Feifei; Zhang, Peng; Zhang, Jian: Computing and estimating the volume of the solution space of SMT(LA) constraints (2018)
  6. Kahle, David; Yoshida, Ruriko; Garcia-Puente, Luis: Hybrid schemes for exact conditional inference in discrete exponential families (2018)
  7. Kaniovski, Serguei; Kurz, Sascha: Representation-compatible power indices (2018)
  8. Kaniovski, Serguei; Zaigraev, Alexander: The probability of majority inversion in a two-stage voting system with three states (2018)
  9. Nguyen, Danny; Pak, Igor: Enumerating projections of integer points in unbounded polyhedra (2018)
  10. Assarf, Benjamin; Gawrilow, Ewgenij; Herr, Katrin; Joswig, Michael; Lorenz, Benjamin; Paffenholz, Andreas; Rehn, Thomas: Computing convex hulls and counting integer points with \textttpolymake (2017)
  11. Breuer, Felix; Zafeirakopoulos, Zafeirakis: Polyhedral omega: a new algorithm for solving linear Diophantine systems (2017)
  12. Pak, Igor; Panova, Greta: On the complexity of computing Kronecker coefficients (2017)
  13. Richter, Wolf-Dieter; Schicker, Kay: Polyhedral star-shaped distributions (2017)
  14. Rossmann, Tobias: A framework for computing zeta functions of groups, algebras, and modules (2017)
  15. Toth, Csaba D. (ed.); Goodman, Jacob E. (ed.); O’Rourke, Joseph (ed.): Handbook of discrete and computational geometry (2017)
  16. Tran, Hoang; Webster, Clayton G.; Zhang, Guannan: Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients (2017)
  17. Habibi, Jalal; Moshiri, Behzad; Sedigh, Ali Khaki; Morari, Manfred: Low-complexity control of hybrid systems using approximate multi-parametric MILP (2016)
  18. Krumm, David: Computing points of bounded height in projective space over a number field (2016)
  19. Baldoni, Velleda; Berline, Nicole; De Loera, Jesús A.; Dutra, Brandon E.; Köppe, Matthias; Vergne, Michèle: Coefficients of Sylvester’s denumerant (2015)
  20. Bogart, Tristram; Haase, Christian; Hering, Milena; Lorenz, Benjamin; Nill, Benjamin; Paffenholz, Andreas; Rote, Günter; Santos, Francisco; Schenck, Hal: Finitely many smooth (d)-polytopes with (n) lattice points (2015)

1 2 3 4 5 6 next