References in zbMATH (referenced in 190 articles , 1 standard article )

Showing results 1 to 20 of 190.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Thomas, Abin; Vishwakarma, Gajendra K.; Bhattacharjee, Atanu: Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers (2021)
  2. Aaron Cochrane: TEfits: Nonlinear regression for time-evolving indices (2020) not zbMATH
  3. Achim Zeileis, Susanne Köll, Nathaniel Graham: Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R (2020) not zbMATH
  4. Cho, Sun-Joo; Brown-Schmidt, Sarah; De Boeck, Paul; Shen, Jianhong: Modeling intensive polytomous time-series eye-tracking data: a dynamic tree-based item response model (2020)
  5. Christen, J. Andrés; Parker, Albert E.: Systematic statistical analysis of microbial data from dilution series (2020)
  6. Cunen, Céline; Walløe, Lars; Hjort, Nils Lid: Focused model selection for linear mixed models with an application to whale ecology (2020)
  7. Gupta, Bhisham C.; Guttman, Irwin; Jayalath, Kalanka P.: Statistics and probability with applications for engineers and scientists using MINITAB, R and JMP (2020)
  8. Matthias Speidel, Jörg Drechsler, Shahab Jolani: The R Package hmi: A Convenient Tool for Hierarchical Multiple Imputation and Beyond (2020) not zbMATH
  9. Miller, David L.; Glennie, Richard; Seaton, Andrew E.: Understanding the stochastic partial differential equation approach to smoothing (2020)
  10. Murakami, Daisuke; Griffith, Daniel A.: A memory-free spatial additive mixed modeling for big spatial data (2020)
  11. Roustant, Olivier; Padonou, Espéran; Deville, Yves; Clément, Aloïs; Perrin, Guillaume; Giorla, Jean; Wynn, Henry: Group kernels for Gaussian process metamodels with categorical inputs (2020)
  12. Titz, J.: mimosa: A Modern Graphical User Interface for 2-level Mixed Models (2020) not zbMATH
  13. Tomás Capretto, Camen Piho, Ravin Kumar, Jacob Westfall, Tal Yarkoni, Osvaldo A. Martin: Bambi: A simple interface for fitting Bayesian linear models in Python (2020) arXiv
  14. Yoon, Hwan-Jin; Welsh, Alan H.: On the effect of ignoring correlation in the covariates when fitting linear mixed models (2020)
  15. Ann-Kristin Kreutzmann; Sören Pannier; Natalia Rojas-Perilla; Timo Schmid; Matthias Templ; Nikos Tzavidis: The R Package emdi for Estimating and Mapping Regionally Disaggregated Indicators (2019) not zbMATH
  16. Baey, Charlotte; Cournède, Paul-Henry; Kuhn, Estelle: Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models (2019)
  17. Bon, Joshua J.; Murray, Kevin; Turlach, Berwin A.: Fitting monotone polynomials in mixed effects models (2019)
  18. Flores-Agreda, Daniel; Cantoni, Eva: Bootstrap estimation of uncertainty in prediction for generalized linear mixed models (2019)
  19. Haziq Jamil, Wicher Bergsma: iprior: An R Package for Regression Modelling using I-priors (2019) arXiv
  20. Heathcote, Andrew; Holloway, Eleanor; Sauer, James: Confidence and varieties of bias (2019)

1 2 3 ... 8 9 10 next