References in zbMATH (referenced in 108 articles )

Showing results 1 to 20 of 108.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Cong Xu, Pantelis Z. Hadjipantelis, Jane-Ling Wang: Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM (2020) not zbMATH
  2. Rainer Hirk, Kurt Hornik, Laura Vana: mvord: An R Package for Fitting Multivariate Ordinal Regression Models (2020) not zbMATH
  3. Ritz, Christian; Jensen, Signe Marie; Gerhard, Daniel; Streibig, Jens Carl: Dose-response analysis using R (2020)
  4. Addo, E. jun.; Chanda, E. K.; Metcalfe, A. V.: Spatial pair-copula model of grade for an anisotropic gold deposit (2019)
  5. Ann-Kristin Kreutzmann; Sören Pannier; Natalia Rojas-Perilla; Timo Schmid; Matthias Templ; Nikos Tzavidis: The R Package emdi for Estimating and Mapping Regionally Disaggregated Indicators (2019) not zbMATH
  6. Geraci, Marco: Modelling and estimation of nonlinear quantile regression with clustered data (2019)
  7. Graf, Monique; Marín, J. Miguel; Molina, Isabel: A generalized mixed model for skewed distributions applied to small area estimation (2019)
  8. Haziq Jamil, Wicher Bergsma: iprior: An R Package for Regression Modelling using I-priors (2019) arXiv
  9. Lee, Wonyul; Miranda, Michelle F.; Rausch, Philip; Baladandayuthapani, Veerabhadran; Fazio, Massimo; Downs, J. Crawford; Morris, Jeffrey S.: Bayesian semiparametric functional mixed models for serially correlated functional data, with application to glaucoma data (2019)
  10. Mies, Fabian; Steland, Ansgar: Nonparametric Gaussian inference for stable processes (2019)
  11. Singer, Julio M.; Rocha, Francisco M. M.; André, Carmen D. S.; Zerbini, Talita: Fitting mixed models to messy longitudinal data: a case study involving estimation of post mortem intervals (2019)
  12. Tekbudak, Merve Yasemin; Alfaro-Córdoba, Marcela; Maity, Arnab; Staicu, Ana-Maria: A comparison of testing methods in scalar-on-function regression (2019)
  13. Wang, Wan-Lun: Mixture of multivariate (t) nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values (2019)
  14. Brown, Jonathon D.: Advanced statistics for the behavioral sciences. A computational approach with R (2018)
  15. Duncan Lee; Alastair Rushworth; Gary Napier: Spatio-Temporal Areal Unit Modeling in R with Conditional Autoregressive Priors Using the CARBayesST Package (2018) not zbMATH
  16. Lars Rönnegård, Xia Shen, Moudud Alam: hglm: A Package for Fitting Hierarchical Generalized Linear Models (2018) not zbMATH
  17. Odile Sauzet; Jannik Rehse; Janne Helene Breiding: DistdichoR a R Package for the distributional dichotomisation of continuous outcomes (2018) arXiv
  18. Wagner Bonat: Multiple Response Variables Regression Models in R: The mcglm Package (2018) not zbMATH
  19. Wu, Meihua; Diez-Roux, Ana; Raghunathan, Trivellore E.; Sánchez, Brisa N.: FPCA-based method to select optimal sampling schedules that capture between-subject variability in longitudinal studies (2018)
  20. Agasisti, Tommaso; Ieva, Francesca; Paganoni, Anna Maria: Heterogeneity, school-effects and the north/south achievement gap in Italian secondary education: evidence from a three-level mixed model (2017)

1 2 3 4 5 6 next