Software for Solving Optimal Control Problems. MISER3 is a suite of Fortran programs for solving continuous and discrete-time optimal control problems, optimal parameter selection problems, or a combination of both, subject to general constraints. The method used is based on the idea of control parametrization in which the controls are approximated by piecewise constant or piecewise linear (continuous) functions defined on suitable partitions of the time interval. The code then converts the problem into a nonlinear programming problem which is solved using a sequential quadratic programming algorithm.

References in zbMATH (referenced in 72 articles , 1 standard article )

Showing results 1 to 20 of 72.
Sorted by year (citations)

1 2 3 4 next

  1. Jones, Tiffany A.; Caccetta, Lou; Rehbock, Volker: Optimisation modelling of cancer growth (2017)
  2. Wang, Yujing; Yu, Changjun; Teo, Kok: A new computational strategy for optimal control problem with a cost on changing control (2016)
  3. Yang, Feng; Teo, Kok Lay; Loxton, Ryan; Rehbock, Volker; Li, Bin; Yu, Changjun; Jennings, Leslie: Visual MISER: an efficient user-friendly visual program for solving optimal control problems (2016)
  4. Al Helal, Zahra; Rehbock, Volker; Loxton, Ryan: Modelling and optimal control of blood glucose levels in the human body (2015)
  5. Puchkova, Alena; Rehbock, Volker; Teo, Kok Lay: Closed-form solutions of a fishery harvesting model with state constraint (2014)
  6. Sun, Yufei; Aw, Grace; Loxton, Ryan; Teo, Kok Lay: An optimal machine maintenance problem with probabilistic state constraints (2014)
  7. Adler, Stephen L.: The guide to PAMIR. Theory and use of parameterized adaptive multidimensional integration routines (2013)
  8. Li, Bin; Xu, Chao; Teo, Kok Lay; Chu, Jian: Time optimal Zermelo’s navigation problem with moving and fixed obstacles (2013)
  9. Yang, Youping; Xiao, Yanni; Wu, Jianhong: Pulse HIV vaccination: feasibility for virus eradication and optimal vaccination schedule (2013)
  10. Yu, Changjun; Li, Bin; Loxton, Ryan; Teo, Kok Lay: Optimal discrete-valued control computation (2013)
  11. Lin, Qun; Loxton, Ryan; Teo, Kok Lay; Wu, Yong Hong: Optimal control computation for nonlinear systems with state-dependent stopping criteria (2012)
  12. Wei, W.; Teo, K. L.; Zhan, Z. D.: A numerical method for an impulsive optimal control problem with sensitivity consideration (2012)
  13. Woon, Siew Fang; Rehbock, Volker; Loxton, Ryan: Towards global solutions of optimal discrete-valued control problems (2012)
  14. Zhou, Jingyang; Teo, Kok Lay; Zhou, Di; Zhao, Guohui: Nonlinear optimal feedback control for lunar module soft landing (2012)
  15. Loxton, R.; Teo, K. L.; Rehbock, V.: Robust suboptimal control of nonlinear systems (2011)
  16. Wei, W.; Teo, K. L.; Zhan, Z.: A numerical method for an optimal control problem with minimum sensitivity on coefficient variation (2011)
  17. Wu, C. Z.; Teo, K. L.; Volker, R.: Optimal control of switched system with time delay detection of switching signal (2011)
  18. Zhou, J. Y.; Teo, K. L.; Zhou, D.; Zhao, G. H.: Optimal guidance for lunar module soft landing (2010)
  19. Caccetta, Louis; van Loosen, Ian; Rehbock, Volker: Effective algorithms for a class of discrete valued optimal control problems (2009)
  20. Gerdts, Matthias; Karrenberg, Simon; Müller-Beßler, Bernhard; Stock, Gregor: Generating locally optimal trajectories for an automatically driven car (2009)

1 2 3 4 next