AMBRE - a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals. The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d=4-2ϵ dimensions. It may be applied for tadpoles as well as for multi-leg multi-loop scalar and tensor integrals. The package uses a loop-by-loop approach and aims at lowest dimensions of the final MB representations. The present version works fine for planar Feynman diagrams. The output may be further processed by the package MB for the determination of its singularity structure in ϵ. The AMBRE package contains various sample applications for Feynman integrals with up to six external particles and up to four loops (Source:

References in zbMATH (referenced in 26 articles , 1 standard article )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Bern, Zvi; Cheung, Clifford; Roiban, Radu; Shen, Chia-Hsien; Solon, Mikhail P.; Zeng, Mao: Black hole binary dynamics from the double copy and effective theory (2019)
  2. Phan, Khiem Hong; Riemann, Tord: Scalar 1-loop Feynman integrals as meromorphic functions in space-time dimension $d$ (2019)
  3. Blümlein, Johannes; Schneider, Carsten: Analytic computing methods for precision calculations in quantum field theory (2018)
  4. Bourjaily, Jacob L.; McLeod, Andrew J.; von Hippel, Matt; Wilhelm, Matthias: Rationalizing loop integration (2018)
  5. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  6. Ievgen Dubovyk, Janusz Gluza, Tord Riemann, Johann Usovitsch: Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions (2016) arXiv
  7. Rutger Boels, Bernd A. Kniehl, Gang Yang: Towards a four-loop form factor (2016) arXiv
  8. Chen, Long-Bin; Qiao, Cong-Feng: Two-loop QCD corrections to (B_c) meson leptonic decays (2015)
  9. Ochman, Michał; Riemann, Tord: \textttMBsums-- a \textttMathematicapackage for the representation of Mellin-Barnes integrals by multiple sums (2015)
  10. Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.: The (O(\alpha_s^3 T_F^2)) contributions to the gluonic operator matrix element (2014)
  11. Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz; Riemann, Tord: Some remarks on non-planar Feynman diagrams (2013)
  12. Mauri, Andrea; Santambrogio, Alberto; Scoleri, Stefano: The leading-order dressing phase in ABJM theory (2013)
  13. Somogyi, Gábor: A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms (2013)
  14. Brandhuber, Andreas; Travaglini, Gabriele; Yang, Gang: Analytic two-loop form factors in ( \mathcalN= 4 ) SYM (2012)
  15. Bolzoni, Paolo; Somogyi, Gábor; Trócsányi, Zoltán: A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms (2011)
  16. Alday, Luis F.; Henn, Johannes; Plefka, Jan; Schuster, Theodor: Scattering into the fifth dimension of (\mathcalN= 4) super Yang-Mills (2010)
  17. Bak, Dongsu; Min, Hyunsoo; Rey, Soo-Jong: Generalized dynamical spin chain and 4-loop integrability in (\mathcalN=6) superconformal Chern-Simons theory (2010)
  18. Beneke, M.; Huber, T.; Li, Xin-Qiang: NNLO vertex corrections to non-leptonic B decays: tree amplitudes (2010)
  19. Bytev, Vladimir V.; Kalmykov, Mikhail Yu.; Kniehl, Bernd A.: Differential reduction of generalized hypergeometric functions from Feynman diagrams: one-variable case (2010)
  20. Henn, Johannes M.; Naculich, Stephen G.; Schnitzer, Howard J.; Spradlin, Marcus: Higgs-regularized three-loop four-gluon amplitude in ( \mathcalN= 4 ) SYM: exponentiation and Regge limits (2010)

1 2 next