shallot
Random Partition Distribution Indexed by Pairwise Information. We propose a random partition distribution indexed by pairwise similarity information such that partitions compatible with the similarities are given more probability. The use of pairwise similarities, in the form of distances, is common in some clustering algorithms (e.g., hierarchical clustering), but we show how to use this type of information to define a prior partition distribution for flexible Bayesian modeling. A defining feature of the distribution is that it allocates probability among partitions within a given number of subsets, but it does not shift probability among sets of partitions with different numbers of subsets. Our distribution places more probability on partitions that group similar items yet keeps the total probability of partitions with a given number of subsets constant. The distribution of the number of subsets (and its moments) is available in closed-form and is not a function of the similarities. Our formulation has an explicit probability mass function (with a tractable normalizing constant) so the full suite of MCMC methods may be used for posterior inference. We compare our distribution with several existing partition distributions, showing that our formulation has attractive properties. We provide three demonstrations to highlight the features and relative performance of our distribution.
Keywords for this software
References in zbMATH (referenced in 6 articles )
Showing results 1 to 6 of 6.
Sorted by year (- David B. Dahl: Integration of R and Scala Using rscala (2020) not zbMATH
- Smith, Adam N.; Allenby, Greg M.: Demand models with random partitions (2020)
- Wehrhahn, Claudia; Leonard, Samuel; Rodriguez, Abel; Xifara, Tatiana: A Bayesian approach to disease clustering using restricted Chinese restaurant processes (2020)
- Camerlenghi, Federico; Dunson, David B.; Lijoi, Antonio; Prünster, Igor; Rodríguez, Abel: Latent nested nonparametric priors (with discussion) (2019)
- M. Cristina Heredia-Gómez; Salvador García; Pedro Antonio Gutiérrez; Francisco Herrera: OCAPIS: R package for Ordinal Classification And Preprocessing In Scala (2018) arXiv
- Page, Garritt L.; Quintana, Fernando A.: Calibrating covariate informed product partition models (2018)