iPhos-PseEvo

iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory. Protein phosphorylation plays a critical role in human body by altering the structural conformation of a protein, causing it to become activated/deactivated, or functional modification. Given an uncharacterized protein sequence, can we predict whether it may be phosphorylated or may not? This is no doubt a very meaningful problem for both basic research and drug development. Unfortunately, to our best knowledge, so far no high throughput bioinformatics tool whatsoever has been developed to address such a very basic but important problem due to its extremely complexity and lacking sufficient training data. Here we proposed a predictor called iPhos-PseEvo by (1) incorporating the protein sequence evolutionary information into the general pseudo amino acid composition (PseAAC) via the grey system theory, (2) balancing out the skewed training datasets by the asymmetric bootstrap approach, and (3) constructing an ensemble predictor by fusing an array of individual random forest classifiers thru a voting system. Rigorous jackknife tests have indicated that very promising success rates have been achieved by iPhos-PseEvo even for such a difficult problem. A user-friendly web-server for iPhos-PseEvo has been established at http://www.jci-bioinfo.cn/iPhos-PseEvo, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It has not escaped our notice that the formulation and approach presented here can be used to analyze many other problems in protein science as well


References in zbMATH (referenced in 17 articles )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Bai, Xiaolu; Chen, Xiaolin: Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia (2019)
  2. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  3. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  4. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  5. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  6. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  7. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  8. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  9. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  10. Ju, Zhe; Wang, Shi-Yun: Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm (2018)
  11. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  12. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  13. Zhang, Shengli; Duan, Xin: Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC (2018)
  14. Goede, Simon L.; de Galan, Bastiaan E.; Leow, Melvin Khee Shing: Personalized glucose-insulin model based on signal analysis (2017)
  15. Zhai, Jing-Xuan; Cao, Tian-Jie; An, Ji-Yong; Bian, Yong-Tao: Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC (2017)
  16. Muthu Krishnan, S.: Classify vertebrate hemoglobin proteins by incorporating the evolutionary information into the general PseAAC with the hybrid approach (2016)
  17. Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Lv, Yingli: Characterization of BioPlex network by topological properties (2016)