PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. The pseudo oligonucleotide composition, or pseudo K-tuple nucleotide composition (PseKNC), can be used to represent a DNA or RNA sequence with a discrete model or vector yet still keep considerable sequence order information, particularly the global or long-range sequence order information, via the physicochemical properties of its constituent oligonucleotides. Therefore, the PseKNC approach may hold very high potential for enhancing the power in dealing with many problems in computational genomics and genome sequence analysis. However, dealing with different DNA or RNA problems may need different kinds of PseKNC. Here, we present a flexible and user-friendly web server for PseKNC (at by which users can easily generate many different modes of PseKNC according to their need by selecting various parameters and physicochemical properties. Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to generate their desired PseKNC without the need to follow the complicated mathematical equations, which are presented in this article just for the integrity of PseKNC formulation and its development. It is anticipated that the PseKNC web server will become a very useful tool in computational genomics and genome sequence analysis.

References in zbMATH (referenced in 31 articles )

Showing results 1 to 20 of 31.
Sorted by year (citations)

1 2 next

  1. Adilina, Sheikh; Farid, Dewan Md; Shatabda, Swakkhar: Effective DNA binding protein prediction by using key features via Chou’s general PseAAC (2019)
  2. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  3. Ning, Qiao; Ma, Zhiqiang; Zhao, Xiaowei: Dforml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components (2019)
  4. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  5. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  6. Tian, Baoguang; Wu, Xue; Chen, Cheng; Qiu, Wenying; Ma, Qin; Yu, Bin: Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach (2019)
  7. Zhao, Wei; Li, Guang-Ping; Wang, Jun; Zhou, Yuan-Ke; Gao, Yang; Du, Pu-Feng: Predicting protein sub-Golgi locations by combining functional domain enrichment scores with pseudo-amino acid compositions (2019)
  8. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  9. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  10. Contreras-Torres, Ernesto: Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou’s PseAAC (2018)
  11. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  12. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  13. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  14. Sabooh, M. Fazli; Iqbal, Nadeem; Khan, Mukhtaj; Khan, Muslim; Maqbool, H. F.: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC (2018)
  15. Sankari, E. Siva; Manimegalai, D.: Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC (2018)
  16. Srivastava, Abhishikha; Kumar, Ravindra; Kumar, Manish: BlaPred: predicting and classifying (\beta)-lactamase using a 3-tier prediction system via Chou’s general PseAAC (2018)
  17. Zhang, Shengli; Duan, Xin: Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC (2018)
  18. Zhang, Shengli; Liang, Yunyun: Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC (2018)
  19. Shatabda, Swakkhar; Saha, Sanjay; Sharma, Alok; Dehzangi, Abdollah: iPHLoc-ES: identification of bacteriophage protein locations using evolutionary and structural features (2017)
  20. Amiri, Saeid; Dinov, Ivo D.: Comparison of genomic data via statistical distribution (2016)

1 2 next