iRSpot-TNCPseAAC: Identify Recombination Spots with Trinucleotide Composition and Pseudo Amino Acid Components. Meiosis and recombination are the two opposite aspects that coexist in a DNA system. As a driving force for evolution by generating natural genetic variations, meiotic recombination plays a very important role in the formation of eggs and sperm. Interestingly, the recombination does not occur randomly across a genome, but with higher probability in some genomic regions called “hotspots”, while with lower probability in so-called “coldspots”. With the ever-increasing amount of genome sequence data in the postgenomic era, computational methods for effectively identifying the hotspots and coldspots have become urgent as they can timely provide us with useful insights into the mechanism of meiotic recombination and the process of genome evolution as well. To meet the need, we developed a new predictor called “iRSpot-TNCPseAAC”, in which a DNA sample was formulated by combining its trinucleotide composition (TNC) and the pseudo amino acid components (PseAAC) of the protein translated from the DNA sample according to its genetic codes. The former was used to incorporate its local or short-rage sequence order information; while the latter, its global and long-range one. Compared with the best existing predictor in this area, iRSpot-TNCPseAAC achieved higher rates in accuracy, Mathew’s correlation coefficient, and sensitivity, indicating that the new predictor may become a useful tool for identifying the recombination hotspots and coldspots, or, at least, become a complementary tool to the existing methods. It has not escaped our notice that the aforementioned novel approach to incorporate the DNA sequence order information into a discrete model may also be used for many other genome analysis problems. The web-server for iRSpot-TNCPseAAC is available at Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to obtain their desired result without the need to follow the complicated mathematical equations.

References in zbMATH (referenced in 31 articles )

Showing results 1 to 20 of 31.
Sorted by year (citations)

1 2 next

  1. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  2. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  3. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  4. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  5. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  6. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  7. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  8. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  9. Sabooh, M. Fazli; Iqbal, Nadeem; Khan, Mukhtaj; Khan, Muslim; Maqbool, H. F.: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC (2018)
  10. Tarafder, Sumit; Toukir Ahmed, Md.; Iqbal, Sumaiya; Tamjidul Hoque, Md; Sohel Rahman, M.: RBSURFpred: modeling protein accessible surface area in real and binary space using regularized and optimized regression (2018)
  11. Ali, Farman; Hayat, Maqsood: Machine learning approaches for discrimination of extracellular matrix proteins using hybrid feature space (2016)
  12. Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach (2016)
  13. Muthu Krishnan, S.: Classify vertebrate hemoglobin proteins by incorporating the evolutionary information into the general PseAAC with the hybrid approach (2016)
  14. Aram, Reza Zohouri; Charkari, Nasrollah Moghadam: A two-layer classification framework for protein fold recognition (2015)
  15. Bag, Susmita; Ramaiah, Sudha; Anbarasu, Anand: fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study (2015)
  16. Ding, Yanrui; Wang, Xueqin; Mou, Zhaolin: Communities in the iron superoxide dismutase amino acid network (2015)
  17. Georgiou, D. N.; Karakasidis, T. E.; Megaritis, A. C.; Nieto, Juan J.; Torres, A.: An extension of fuzzy topological approach for comparison of genetic sequences (2015)
  18. Golzari, Fahimeh; Jalili, Saeed: VR-BFDT: a variance reduction based binary fuzzy decision tree induction method for protein function prediction (2015)
  19. Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali: Discrimination of acidic and alkaline enzyme using Chou’s pseudo amino acid composition in conjunction with probabilistic neural network model (2015)
  20. Kumar, Ravindra; Srivastava, Abhishikha; Kumari, Bandana; Kumar, Manish: Prediction of (\beta)-lactamase and its class by Chou’s pseudo-amino acid composition and support vector machine (2015)

1 2 next