iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. The σ(54) promoters are unique in prokaryotic genome and responsible for transcripting carbon and nitrogen-related genes. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the σ(54) promoters. Here, a predictor called ’iPro54-PseKNC’ was developed. In the predictor, the samples of DNA sequences were formulated by a novel feature vector called ’pseudo k-tuple nucleotide composition’, which was further optimized by the incremental feature selection procedure. The performance of iPro54-PseKNC was examined by the rigorous jackknife cross-validation tests on a stringent benchmark data set. As a user-friendly web-server, iPro54-PseKNC is freely accessible at http://lin.uestc.edu.cn/server/iPro54-PseKNC. For the convenience of the vast majority of experimental scientists, a step-by-step protocol guide was provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented in this paper just for its integrity. Meanwhile, we also discovered through an in-depth statistical analysis that the distribution of distances between the transcription start sites and the translation initiation sites were governed by the gamma distribution, which may provide a fundamental physical principle for studying the σ(54) promoters.

References in zbMATH (referenced in 32 articles )

Showing results 1 to 20 of 32.
Sorted by year (citations)

1 2 next

  1. Chen, Guodong; Cao, Man; Yu, Jialin; Guo, Xinyun; Shi, Shaoping: Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC (2019)
  2. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  3. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  4. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  5. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  6. Qing, Yang; Cangzhi, Jia; Taoying, Li: Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier (2019)
  7. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  8. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  9. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  10. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  11. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  12. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  13. Sankari, E. Siva; Manimegalai, D.: Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC (2018)
  14. Srivastava, Abhishikha; Kumar, Ravindra; Kumar, Manish: BlaPred: predicting and classifying (\beta)-lactamase using a 3-tier prediction system via Chou’s general PseAAC (2018)
  15. Tarafder, Sumit; Toukir Ahmed, Md.; Iqbal, Sumaiya; Tamjidul Hoque, Md; Sohel Rahman, M.: RBSURFpred: modeling protein accessible surface area in real and binary space using regularized and optimized regression (2018)
  16. Tian, Kun; Zhao, Xin; Yau, Stephen S.-T.: Convex hull analysis of evolutionary and phylogenetic relationships between biological groups (2018)
  17. Zhang, Shengli; Liang, Yunyun: Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC (2018)
  18. Jiao, Xiong; Ranganathan, Shoba: Prediction of interface residue based on the features of residue interaction network (2017)
  19. Khan, Muslim; Hayat, Maqsood; Khan, Sher Afzal; Ahmad, Saeed; Iqbal, Nadeem: Bi-PSSM: position specific scoring matrix based intelligent computational model for identification of mycobacterial membrane proteins (2017)
  20. Pai, Priyadarshini P.; Dash, Tirtharaj; Mondal, Sukanta: Sequence-based discrimination of protein-RNA interacting residues using a probabilistic approach (2017)

1 2 next