GYSELA

A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. A new code is presented here, named Gyrokinetic SEmi-LAgragian (GYSELA) code, which solves 4D drift-kinetic equations for ion temperature gradient driven turbulence in a cylinder (r,θ,z). The code validation is performed with the slab ITG mode that only depends on the parallel velocity. This code uses a semi-Lagrangian numerical scheme, which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been validated in the linear and non-linear regimes. The GYSELA code is found to be stable over long simulation times (more than 20 times the linear growth rate of the most unstable mode), including for cases with a high resolution mesh (δr∼0·1 Larmor radius, δz∼10 Larmor radius).


References in zbMATH (referenced in 40 articles , 1 standard article )

Showing results 1 to 20 of 40.
Sorted by year (citations)

1 2 next

  1. Einkemmer, Lukas: A performance comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions (2019)
  2. Bouzat, Nicolas; Bressan, Camilla; Grandgirard, Virginie; Latu, Guillaume; Mehrenberger, Michel: Targeting realistic geometry in tokamak code Gysela (2018)
  3. Deriaz, Erwan; Peirani, Sébastien: Six-dimensional adaptive simulation of the Vlasov equations using a hierarchical basis (2018)
  4. Einkemmer, Lukas; Lubich, Christian: A low-rank projector-splitting integrator for the Vlasov-Poisson equation (2018)
  5. Einkemmer, Lukas; Ostermann, Alexander: A comparison of boundary correction methods for Strang splitting (2018)
  6. Ghosh, Debojyoti; Dorf, Mikhail A.; Dorr, Milo R.; Hittinger, Jeffrey A. F.: Kinetic simulation of collisional magnetized plasmas with semi-implicit time integration (2018)
  7. Latu, Guillaume; Mehrenberger, Michel; Güçlü, Yaman; Ottaviani, Maurizio; Sonnendrücker, Eric: Field-aligned interpolation for semi-Lagrangian gyrokinetic simulations (2018)
  8. Degond, Pierre; Deluzet, Fabrice: Asymptotic-preserving methods and multiscale models for plasma physics (2017)
  9. Doisneau, François; Arienti, Marco; Oefelein, Joseph C.: A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows (2017)
  10. Filbet, Francis; Prouveur, Charles: High order time discretization for backward semi-Lagrangian methods (2016)
  11. Frénod, Emmanuel (ed.): Preface: Homogenization-Based Numerical Methods (2016)
  12. Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrücker, E.; Strugarek, A.; Zarzoso, D.: A 5D gyrokinetic full-(f) global semi-Lagrangian code for flux-driven ion turbulence simulations (2016)
  13. Hamiaz, Adnane; Mehrenberger, Michel; Sellama, Hocine; Sonnendrücker, Eric: The semi-Lagrangian method on curvilinear grids (2016)
  14. Mehrenberger, Michel; Mendoza, Laura S.; Prouveur, Charles; Sonnendrücker, Eric: Solving the guiding-center model on a regular hexagonal mesh (2016)
  15. Ye, Lei; Xu, Yingfeng; Xiao, Xiaotao; Dai, Zongliang; Wang, Shaojie: A gyrokinetic continuum code based on the numerical Lie transform (NLT) method (2016)
  16. Frénod, Emmanuel; Lutz, Mathieu: On the geometrical gyro-kinetic theory (2014)
  17. Yang, Chang; Filbet, Francis: Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations (2014)
  18. Cartier-Michaud, Thomas; Ghendrih, Philippe; Grandgirard, Virginie; Latu, Guillaume: Optimizing the parallel scheme of the Poisson solver for the reduced kinetic code TERESA (2013)
  19. Coulette, David; Besse, Nicolas: Numerical comparisons of gyrokinetic multi-water-bag models (2013)
  20. Hittinger, J. A. F.; Banks, J. W.: Block-structured adaptive mesh refinement algorithms for Vlasov simulation (2013)

1 2 next