HomCont

HomCont, jointly developed with Alan Champneys (University of Bristol) and Yuri A Kuznetsov (Utrecht University), is a numerical toolbox for homoclinic bifurcation analysis. It is designed for use with AUTO written by Eusebius Doedel (Concordia University). Specifically, HomCont deals with continuation of codimension-one heteroclinic and homoclinic orbits to hyperbolic and saddle-node equilibria, including the detection of many codimension-two singularities and the continuation of these singularities in three or more parameters.


References in zbMATH (referenced in 204 articles , 1 standard article )

Showing results 1 to 20 of 204.
Sorted by year (citations)

1 2 3 ... 9 10 11 next

  1. Amabili, Marco: Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory (2018)
  2. Bujalski, Julia; Dwyer, Grace; Kapitula, Todd; Le, Quang-Nhat; Malvai, Harjasleen; Rosenthal-Kay, Jordan; Ruiter, Joshua: Consensus and clustering in opinion formation on networks (2018)
  3. Burylko, Oleksandr; Mielke, Alexander; Wolfrum, Matthias; Yanchuk, Serhiy: Coexistence of Hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling (2018)
  4. Giraldo, Andrus; Krauskopf, Bernd; Osinga, Hinke M.: Cascades of global bifurcations and chaos near a homoclinic flip bifurcation: a case study (2018)
  5. Qin, B. W.; Chung, K. W.; Rodríguez-Luis, A. J.; Belhaq, M.: Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with (D_4) symmetry (2018)
  6. Tao, Molei: Hyperbolic periodic orbits in nongradient systems and small-noise-induced metastable transitions (2018)
  7. Giraldo, Andrus; Krauskopf, Bernd; Osinga, Hinke M.: Saddle invariant objects and their global manifolds in a neighborhood of a homoclinic flip bifurcation of case B (2017)
  8. Li, Lin; Lin, Ping; Si, Xinhui; Zheng, Liancun: A numerical study for multiple solutions of a singular boundary value problem arising from laminar flow in a porous pipe with moving wall (2017)
  9. Páez Chávez, Joseph; Jungmann, Dirk; Siegmund, Stefan: Modeling and analysis of integrated pest control strategies via impulsive differential equations (2017)
  10. Putelat, T.; Dawes, J. H. P.; Champneys, A. R.: A phase-plane analysis of localized frictional waves (2017)
  11. Stoykov, S.; Margenov, S.: Numerical methods and parallel algorithms for computation of periodic responses of plates (2017)
  12. Verschueren, Nicolas; Champneys, Alan: A model for cell polarization without mass conservation (2017)
  13. Al-Hdaibat, B.; Govaerts, W.; Kuznetsov, Yu. A.; Meijer, H. G. E.: Initialization of homoclinic solutions near Bogdanov-Takens points: Lindstedt-Poincaré compared with regular perturbation method (2016)
  14. Lenz, Eduardo; Pagano, Daniel J.; Tahim, André P. N.: Codimension-two bifurcation analysis in DC microgrids under droop control (2016)
  15. Linaro, Daniele; Storace, Marco: \textscBAL: a library for the \textitbrute-force analysis of dynamical systems (2016)
  16. Aguirre, Pablo: Bifurcations of two-dimensional global invariant manifolds near a noncentral saddle-node homoclinic orbit (2015)
  17. Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez-Luis, A. J.: Analysis of the T-point-Hopf bifurcation in the Lorenz system (2015)
  18. Algaba, A.; Freire, E.; Gamero, E.; Rodríguez-Luis, A. J.: An exact homoclinic orbit and its connection with the Rössler system (2015)
  19. Algaba, Antonio; Domínguez-Moreno, María C.; Merino, Manuel; Rodríguez-Luis, Alejandro J.: Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems (2015)
  20. Gani, M. Osman; Ogawa, Toshiyuki: Instability of periodic traveling wave solutions in a modified Fitzhugh-Nagumo model for excitable media (2015)

1 2 3 ... 9 10 11 next