References in zbMATH (referenced in 17 articles , 1 standard article )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Gil’, Michael: Conservation of the number of the eigenvalues of two-parameter matrix problems in bounded domains under perturbations (2020)
  2. Hochstenbach, Michiel E.; Plestenjak, Bor: Computing several eigenvalues of nonlinear eigenvalue problems by selection (2020)
  3. Boiko, Andrey V.; Demyanko, Kirill V.; Nechepurenko, Yuri M.: Asymptotic boundary conditions for the analysis of hydrodynamic stability of flows in regions with open boundaries (2019)
  4. Hochstenbach, Michiel E.; Meerbergen, Karl; Mengi, Emre; Plestenjak, Bor: Subspace methods for three-parameter eigenvalue problems. (2019)
  5. Hochstenbach, Michiel E.; Mehl, Christian; Plestenjak, Bor: Solving singular generalized eigenvalue problems by a rank-completing perturbation (2019)
  6. Boralevi, Ada; van Doornmalen, Jasper; Draisma, Jan; Hochstenbach, Michiel E.; Plestenjak, Bor: Uniform determinantal representations (2017)
  7. Plestenjak, Bor: Minimal determinantal representations of bivariate polynomials (2017)
  8. Dong, Bo; Yu, Bo; Yu, Yan: A homotopy method for finding all solutions of a multiparameter eigenvalue problem (2016)
  9. Gil’, Michael: Bounds for the spectrum of a two parameter matrix eigenvalue problem (2016)
  10. Plestenjak, Bor: Numerical methods for nonlinear two-parameter eigenvalue problems (2016)
  11. Plestenjak, Bor; Hochstenbach, Michiel E.: Roots of bivariate polynomial systems via determinantal representations (2016)
  12. Hochstenbach, Michiel E.; Muhič, Andrej; Plestenjak, Bor: Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems (2015)
  13. Iwata, Satoru; Nakatsukasa, Yuji; Takeda, Akiko: Computing the signed distance between overlapping ellipsoids (2015)
  14. Meerbergen, Karl; Plestenjak, Bor: A Sylvester-Arnoldi type method for the generalized eigenvalue problem with two-by-two operator determinants. (2015)
  15. Muhič, Andrej; Plestenjak, Bor: A method for computing all values (\lambda) such that (A + \lambdaB) has a multiple eigenvalue (2014)
  16. Hochstenbach, Michiel E.; Muhič, Andrej; Plestenjak, Bor: On linearizations of the quadratic two-parameter eigenvalue problem (2012)
  17. Muhič, Andrej; Plestenjak, Bor: On the quadratic two-parameter eigenvalue problem and its linearization (2010)