The ASTRA Tomography Toolbox is a MATLAB toolbox based on high-performance GPU primitives for 2D and 3D tomography, developed jointly by the ASTRA-Vision Lab research group at the University of Antwerp and CWI, Amsterdam. It supports 2D parallel and fan beam geometries, and 3D parallel and cone beam. All of them have highly flexible source/detector positioning. A large number of 2D and 3D algorithms are available, including FBP, SIRT, SART, CGLS. The basic forward and backward projection operations are GPU-accelerated, and directly callable from MATLAB to enable building new algorithms.

References in zbMATH (referenced in 22 articles )

Showing results 1 to 20 of 22.
Sorted by year (citations)

1 2 next

  1. Banert, Sebastian; Ringh, Axel; Adler, Jonas; Karlsson, Johan; Öktem, Ozan: Data-driven nonsmooth optimization (2020)
  2. Bubba, Tatiana A.; Heikkilä, Tommi; Help, Hanna; Huotari, Simo; Salmon, Yann; Siltanen, Samuli: Sparse dynamic tomography: a shearlet-based approach for iodine perfusion in plant stems (2020)
  3. Toivanen, Jussi; Meaney, Alexander; Siltanen, Samuli; Kolehmainen, Ville: Joint reconstruction in low dose multi-energy CT (2020)
  4. Davide Micieli, Triestino Minniti, Giuseppe Gorini: NeuTomPy toolbox, a Python package for tomographic data processing and reconstruction (2019) not zbMATH
  5. Dong, Yiqiu; Hansen, Per Christian; Hochstenbach, Michiel E.; Brogaard Riis, Nicolai André: Fixing nonconvergence of algebraic iterative reconstruction with an unmatched backprojector (2019)
  6. Guo, Yan; Aveyard, Richard; Rieger, Bernd: A multichannel cross-modal fusion framework for electron tomography (2019)
  7. Marquez, Miguel; Arguello, Henry: Coded aperture optimization for single pixel compressive computed tomography (2019)
  8. Matteo Ravasi, Ivan Vasconcelos: PyLops - A Linear-Operator Python Library for large scale optimization (2019) arXiv
  9. Neumayer, Sebastian; Persch, Johannes; Steidl, Gabriele: Regularization of inverse problems via time discrete geodesics in image spaces (2019)
  10. Sindre Nordmark Olufsen: AXITOM: A Python package for reconstruction of axisymmetric tomograms acquired by a conical beam (2019) not zbMATH
  11. Soubies, Emmanuel; Soulez, Ferréol; McCann, Michael T.; Pham, Thanh-an; Donati, Laurène; Debarre, Thomas; Sage, Daniel; Unser, Michael: Pocket guide to solve inverse problems with GlobalBioim (2019)
  12. Chambolle, Antonin; Ehrhardt, Matthias J.; Richtárik, Peter; Schönlieb, Carola-Bibiane: Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications (2018)
  13. Daniil Kazantsev; Valery Pickalov; Srikanth Nagella; Edoardo Pasca; Philip J. Withers: TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks (2018) not zbMATH
  14. Elfving, Tommy; Hansen, Per Christian: Unmatched projector/backprojector pairs: perturbation and convergence analysis (2018)
  15. Hansen, Per Christian; Jørgensen, Jakob Sauer: AIR tools II: algebraic iterative reconstruction methods, improved implementation (2018)
  16. Kazantsev, Daniil; Jørgensen, Jakob S.; Andersen, Martin S.; Lionheart, William R. B.; Lee, Peter D.; Withers, Philip J.: Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography (2018)
  17. Kongskov, Rasmus Dalgas; Dong, Yiqiu: Tomographic reconstruction methods for decomposing directional components (2018)
  18. van Leeuwen, Tristan; Maretzke, Simon; Batenburg, K. Joost: Automatic alignment for three-dimensional tomographic reconstruction (2018)
  19. Karlsson, Johan; Ringh, Axel: Generalized Sinkhorn iterations for regularizing inverse problems using optimal mass transport (2017)
  20. Ringh, Axel; Zhuge, Xiaodong; Palenstijn, Willem Jan; Batenburg, Kees Joost; Öktem, Ozan: High-level algorithm prototyping: an example extending the TVR-DART algorithm (2017)

1 2 next