RStan

RStan: the R interface to Stan. rstan: User-facing R functions are provided by this package to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the ’StanHeaders’ package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via variational approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.


References in zbMATH (referenced in 50 articles )

Showing results 1 to 20 of 50.
Sorted by year (citations)

1 2 3 next

  1. Angus McLure, Ben O’Neill, Helen Mayfield, Colleen Lau, Brady McPherson: PoolTestR: An R package for estimating prevalence and regression modelling with pooled samples (2020) arXiv
  2. Haaf, Julia M.; Merkle, Edgar C.; Rouder, Jeffrey N.: Do items order? The psychology in IRT models (2020)
  3. Izhar Asael Alonzo Matamoros, Cristian Andres Cruz Torres: varstan: An R package for Bayesian analysis of structured time series models with Stan (2020) arXiv
  4. Jeffrey Pullin, Lyle Gurrin, Damjan Vukcevic: Rater: An R Package for Fitting Statistical Models of Repeated Categorical Ratings (2020) arXiv
  5. Jouni Helske: Efficient Bayesian generalized linear models with time-varying coefficients: The walker package in R (2020) arXiv
  6. Karimi, Belhal; Lavielle, Marc; Moulines, Eric: f-SAEM: a fast stochastic approximation of the EM algorithm for nonlinear mixed effects models (2020)
  7. Manevski, Damjan; Ružić Gorenjec, Nina; Kejžar, Nataša; Blagus, Rok: Modeling COVID-19 pandemic using Bayesian analysis with application to Slovene data (2020)
  8. Panagiotis Papastamoulis, Ioannis Ntzoufras: On the identifiability of Bayesian factor analytic models (2020) arXiv
  9. Renato Valladares Panaro: spsurv: An R package for semi-parametric survival analysis (2020) arXiv
  10. Taysseer Sharaf; Theren Williams; Abdallah Chehade; Keshav Pokhrel: BLNN: An R package for training neural networks using Bayesian inference (2020) not zbMATH
  11. Thach, Tien T.; Bris, Radim; Volf, Petr; Coolen, Frank P. A.: Non-linear failure rate: a Bayes study using Hamiltonian Monte Carlo simulation (2020)
  12. van den Bergh, Don; Bogaerts, Stefan; Spreen, Marinus; Flohr, Rob; Vandekerckhove, Joachim; Batchelder, William H.; Wagenmakers, Eric-Jan: Cultural consensus theory for the evaluation of patients’ mental health scores in forensic psychiatric hospitals (2020)
  13. Yan, Hongxuan; Peters, Gareth W.; Chan, Jennifer S. K.: Multivariate long-memory cohort mortality models (2020)
  14. Amaral Turkman, Maria Antónia; Paulino, Carlos Daniel; Müller, Peter: Computational Bayesian statistics. An introduction (2019)
  15. Antonio Calcagnì, Massimiliano Pastore, Gianmarco Altoè: ssMousetrack: Analysing computerized tracking data via Bayesian state-space models in R (2019) arXiv
  16. Boonstra, Philip S.; Barbaro, Ryan P.; Sen, Ananda: Default priors for the intercept parameter in logistic regressions (2019)
  17. George G Vega Yon; Paul Marjoram: fmcmc: A friendly MCMC framework (2019) not zbMATH
  18. Gronau, Quentin F.; Wagenmakers, Eric-Jan; Heck, Daniel W.; Matzke, Dora: A simple method for comparing complex models: Bayesian model comparison for hierarchical multinomial processing tree models using Warp-III bridge sampling (2019)
  19. Haziq Jamil, Wicher Bergsma: iprior: An R Package for Regression Modelling using I-priors (2019) arXiv
  20. Hystad, Grethe; Eleish, Ahmed; Hazen, Robert M.; Morrison, Shaunna M.; Downs, Robert T.: Bayesian estimation of Earth’s undiscovered mineralogical diversity using noninformative priors (2019)

1 2 3 next