Julia: A fast dynamic language for technical computing. Dynamic languages have become popular for scientific computing. They are generally considered highly productive, but lacking in performance. This paper presents Julia, a new dynamic language for technical computing, designed for performance from the beginning by adapting and extending modern programming language techniques. A design based on generic functions and a rich type system simultaneously enables an expressive programming model and successful type inference, leading to good performance for a wide range of programs. This makes it possible for much of the Julia library to be written in Julia itself, while also incorporating best-of-breed C and Fortran libraries.

References in zbMATH (referenced in 119 articles , 1 standard article )

Showing results 1 to 20 of 119.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Berk, Lauren; Bertsimas, Dimitris; Weinstein, Alexander M.; Yan, Julia: Prescriptive analytics for human resource planning in the professional services industry (2019)
  2. Bertsimas, Dimitris; Jaillet, Patrick; Korolko, Nikita: The (K)-server problem via a modern optimization Lens (2019)
  3. Caraiani, Petre: Introduction to quantitative macroeconomics using Julia. From basic to state-of-the-art computational techniques (2019)
  4. Chris Rackauckas, Mike Innes, Yingbo Ma, Jesse Bettencourt, Lyndon White, Vaibhav Dixit: DiffEqFlux.jl - A Julia Library for Neural Differential Equations (2019) arXiv
  5. Contardo, Claudio; Iori, Manuel; Kramer, Raphael: A scalable exact algorithm for the vertex (p)-center problem (2019)
  6. Cox, Marco; van de Laar, Thijs; de Vries, Bert: A factor graph approach to automated design of Bayesian signal processing algorithms (2019)
  7. Damle, Anil; Levitt, Antoine; Lin, Lin: Variational formulation for Wannier functions with entangled band structure (2019)
  8. Dowson, Oscar; Philpott, Andy; Mason, Andrew; Downward, Anthony: A multi-stage stochastic optimization model of a pastoral dairy farm (2019)
  9. Emerson V. Castelani; Ronaldo Lopes; Wesley V. I. Shirabayashi; Francisco N. C. Sobral: RAFF.jl: Robust Algebraic Fitting Function in Julia (2019) not zbMATH
  10. Fung, Samy Wu; Ruthotto, Lars: A multiscale method for model order reduction in PDE parameter estimation (2019)
  11. Gevorkyan, Migran N.; Korolkova, Anna V.; Kulyabov, Dmitry S.; Lovetskiy, Konstantin P.: Statistically significant comparative performance testing of Julia and Fortran languages in case of Runge-Kutta methods (2019)
  12. Hesaraki, Alireza F.; Dellaert, Nico P.; de Kok, Ton: Generating outpatient chemotherapy appointment templates with balanced flowtime and makespan (2019)
  13. Kristoffer Carlsson; Fredrik Ekre: Tensors.jl - Tensor Computations in Julia (2019) not zbMATH
  14. Mathieu Besançon: A Julia package for bilevel optimization problems (2019) not zbMATH
  15. Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, Christian Schilling: JuliaReach: a Toolbox for Set-Based Reachability (2019) arXiv
  16. Adam Glos, Jarosław Adam Miszczak, Mateusz Ostaszewski: QSWalk.jl: Julia package for quantum stochastic walks analysis (2018) arXiv
  17. Alan Hylton, Gregory Henselman-Petrusek, Janche Sang, Robert Short: Tuning the Performance of a Computational Persistent Homology Package (2018) arXiv
  18. Alfonso Landeros, Timothy Stutz, Kevin L. Keys, Alexander Alekseyenko, Janet S. Sinsheimer, Kenneth Lange, Mary Sehl: BioSimulator.jl: Stochastic simulation in Julia (2018) arXiv
  19. Altherr, Lena C.; Dörig, Bastian; Ederer, Thorsten; Pelz, Peter F.; Pfetsch, Marc E.; Wolf, Jan: A mixed-integer nonlinear program for the design of gearboxes (2018)
  20. Behling, Roger; Bello Cruz, José Yunier; Santos, Luiz-Rafael: Circumcentering the Douglas-Rachford method (2018)

1 2 3 4 5 6 next

Further publications can be found at: http://julialang.org/publications/