References in zbMATH (referenced in 20 articles , 1 standard article )

Showing results 1 to 20 of 20.
Sorted by year (citations)

  1. Sun, Qiang; Jiang, Bai; Zhu, Hongtu; Ibrahim, Joseph G.: Hard thresholding regression (2019)
  2. Aste, Tomaso; Di Matteo, T.: Sparse causality network retrieval from short time series (2017)
  3. Ollier, Edouard; Samson, Adeline; Delavenne, Xavier; Viallon, Vivian: A SAEM algorithm for fused lasso penalized NonLinear Mixed Effect Models: application to group comparison in pharmacokinetics (2016)
  4. Treister, Eran; Turek, Javier S.; Yavneh, Irad: A multilevel framework for sparse optimization with application to inverse covariance estimation and logistic regression (2016)
  5. van Wieringen, Wessel N.; Peeters, Carel F. W.: Ridge estimation of inverse covariance matrices from high-dimensional data (2016)
  6. Martella, Francesca; Vicari, Donatella; Vichi, Maurizio: Partitioning predictors in multivariate regression models (2015)
  7. El Anbari, Mohammed; Mkhadri, Abdallah: Penalized regression combining the ( L_1) norm and a correlation based penalty (2014)
  8. Paul, Debashis; Aue, Alexander: Random matrix theory in statistics: a review (2014)
  9. Rothman, Adam J.; Forzani, Liliana: On the existence of the weighted bridge penalized Gaussian likelihood precision matrix estimator (2014)
  10. Wang, Y.; Daniels, M. J.: Computationally efficient banding of large covariance matrices for ordered data and connections to banding the inverse Cholesky factor (2014)
  11. Boonstra, Philip S.; Mukherjee, Bhramar; Taylor, Jeremy M. G.: Bayesian shrinkage methods for partially observed data with many predictors (2013)
  12. Cook, R. Dennis; Forzani, Liliana; Rothman, Adam J.: Prediction in abundant high-dimensional linear regression (2013)
  13. Hardin, Johanna; Garcia, Stephan Ramon; Golan, David: A method for generating realistic correlation matrices (2013)
  14. Cook, R. Dennis; Forzani, Liliana; Rothman, Adam J.: Estimating sufficient reductions of the predictors in abundant high-dimensional regressions (2012)
  15. Li, Ran; Wu, Baolin: Sparse regularized discriminant analysis with application to microarrays (2012)
  16. Städler, Nicolas; Bühlmann, Peter: Missing values: sparse inverse covariance estimation and an extension to sparse regression (2012)
  17. Pourahmadi, Mohsen: Covariance estimation: the GLM and regularization perspectives (2011)
  18. Ahdesmäki, Miika; Strimmer, Korbinian: Feature selection in omics prediction problems using cat scores and false nondiscovery rate control (2010)
  19. Allen, Genevera I.; Tibshirani, Robert: Transposable regularized covariance models with an application to missing data imputation (2010)
  20. Witten, Daniela M.; Tibshirani, Robert: Covariance-regularized regression and classification for high dimensional problems (2009)