The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D computer graphics, image processing and visualization. VTK consists of a C++ class library and several interpreted interface layers including Tcl/Tk, Java, and Python. Kitware, whose team created and continues to extend the toolkit, offers professional support and consulting services for VTK. VTK supports a wide variety of visualization algorithms including: scalar, vector, tensor, texture, and volumetric methods; and advanced modeling techniques such as: implicit modeling, polygon reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation. VTK has an extensive information visualization framework, has a suite of 3D interaction widgets, supports parallel processing, and integrates with various databases on GUI toolkits such as Qt and Tk. VTK is cross-platform and runs on Linux, Windows, Mac and Unix platforms.

References in zbMATH (referenced in 103 articles )

Showing results 1 to 20 of 103.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Anderson, Robert; Andrej, Julian; Barker, Andrew; Bramwell, Jamie; Camier, Jean-Sylvain; Cerveny, Jakub; Dobrev, Veselin; Dudouit, Yohann; Fisher, Aaron; Kolev, Tzanio; Pazner, Will; Stowell, Mark; Tomov, Vladimir; Akkerman, Ido; Dahm, Johann; Medina, David; Zampini, Stefano: MFEM: a modular finite element methods library (2021)
  2. Götschel, Sebastian; Schiela, Anton; Weiser, Martin: Kaskade 7 -- a flexible finite element toolbox (2021)
  3. Lukas Riedel; Santiago Ospina De Los Ríos; Dion Häfner; Ole Klein: DORiE: A Discontinuous Galerkin Solver for Soil Water Flow and Passive Solute Transport Based on DUNE (2020) not zbMATH
  4. Markus Frings, Norbert Hosters, Corinna Müller, Max Spahn, Christoph Susen, Konstantin Key, Stefanie Elgeti: SplineLib: A Modern Multi-Purpose C++ Spline Library (2020) arXiv
  5. Sander, Oliver: DUNE -- the distributed and unified numerics environment (2020)
  6. Shete, Kedar Prashant; de Bruyn Kops, Stephen M.: Area of scalar isosurfaces in homogeneous isotropic turbulence as a function of Reynolds and Schmidt numbers (2020)
  7. Stewart Boogert, Andrey Abramov, Laurence Nevay, William Shields, Stuart Walker: PYG4OMETRY: a Python library for the creation of Monte Carlo radiation transport physical geometries (2020) arXiv
  8. Thompson, S., Dowrick, T., Xiao, G., Ramalhinho, J., Robu, M., Ahmad, M., Taylor, D., Clarkson, M.J.: SnappySonic: An Ultrasound Acquisition Replay Simulator (2020) not zbMATH
  9. Tobias Stål, Anya M. Reading: A Grid for Multidimensional and Multivariate Spatial Representation and Data Processing (2020) not zbMATH
  10. Balashov, V. A.; Savenkov, E. B.; Chetverushkin, B. N.: DiMP-hydro solver for direct numerical simulation of fluid microflows within pore space of core samples (2019)
  11. C. Bane Sullivan; Alexander A. Kaszynski: PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK) (2019) not zbMATH
  12. Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in Python using sfepy (2019)
  13. Henrik A. Kjeldsberg; Aslak W. Bergersen; KristianValen-Sendstad: morphMan: Automated manipulation of vasculargeometries (2019) not zbMATH
  14. Leavy, R. B.; Guilkey, J. E.; Phung, B. R.; Spear, A. D.; Brannon, R. M.: A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics (2019)
  15. Matthieu Ancellin; Frédéric Dias: Capytaine: a Python-based linear potential flow solver (2019) not zbMATH
  16. Romarowski, R. M.; Faggiano, E.; Conti, M.; Reali, A.; Morganti, S.; Auricchio, F.: A novel computational framework to predict patient-specific hemodynamics after TEVAR: integration of structural and fluid-dynamics analysis by image elaboration (2019)
  17. Adrian R.G. Harwood, Joseph O’Connor, Jonathan Sanchez Muñoz, Marta Camps Santasmasas, Alistair J. Revell: LUMA: A many-core, Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method (2018) not zbMATH
  18. Badia, Santiago; Martín, Alberto F.; Principe, Javier: \textttFEMPAR: an object-oriented parallel finite element framework (2018)
  19. Christoforou, Emmanouil; Mantzaflaris, Angelos; Mourrain, Bernard; Wintz, Julien: Axl, a geometric modeler for semi-algebraic shapes (2018)
  20. Minjie Zhu, Frank McKenna, Michael H. Scott: OpenSeesPy: Python library for the OpenSees finite element framework (2018) not zbMATH

1 2 3 4 5 6 next